Object Relational Algebra

CHAPTER FOUR

OBJECT RELATIONAL ALGEBRA

4.1 Overview

Object relational algebra is a set of operators that take relations as their operands and return a relation as their result. There are eight operators restrict, project, product, union, intersection, difference, join, and divide. In this chapter these operators will be explain in detail.

4.2 Introduction to the Original Algebra

The traditional set operators union, intersection, difference, and Cartesian product (all of them modified somewhat to take account of the fact that their operands are, specifically, relations instead of arbitrary sets). The special relational operators restrict (also know as select), project, join, and divide.

Here are simplified definitions of these eight operators (refer to fig 4.1):

	Restrict :
	Returns a relation containing all tuples from a specified relation that satisfy a specified condition.

	Project :
	Returns a relation containing all (sub) tuples that remain in a specified relation after specified attributes have been removed.

	Product :
	Returns a relation containing all possible tuples that are a combination of two tuples, one from each of tows specified relations.

	Union :
	Returns a relation containing all tuples that appear in either or both of tow specified relations.

	Intersect :
	Returns a relation containing all tuples that appear in both of two specified relations.

	Difference:
	Returns a relation containing all tuples that appear in the first and not the second of two specified relations.

	Join :
	Returns a relation containing all possible tuples that are combinations of two tuples, one from each of tow specified relations, such that the two tuples contributing to any given combination have a common value for the common attributes of the tow relations (and that common value appears just once, not twice, in the result tuple).

	Divide :
	takes two unary relations and one binary relation and returns a relation containing all tuples from one unary relation that appear in the binary relation matched with all tuples in the other unary relation [5].

Figure 4.1 Original Eight Operators (Overview)

4.3 Semantics

In this section there is an explanation of the previous eight operators, with fully explained examples. Where it considers the operators in the sequence union, intersection, difference, product, restrict, project, join, and divide.

4.3.1 Union

In mathematics, the union of two sets in the set of all elements belonging to either or both of the original sets. Since a relation is a set, namely a set of tuples, it is obviously possible to construct the union of two such sets; the result will be a set consisting of tuples appearing in either or both of the original relation. For example, the union of the set of supplier tuples currently appearing in relvar S and the set of part tuples currently appearing in relvar P is certainly a set. Where it could not contain a mixture of different kinds of tuples, they must be "tuple-homogeneous." And, of course, the result is wanted to be a relation, in spite of being the result as a set. Therefore, the union in the relational algebra is not the usual mathematical union; rather, it is a special kind of union, in which required the two input relations to be of the same type- meaning, for example, that they both contain supplier tuples, or both part tuples, but not a mixture of the two. If the two relations are of the same (relation) type, then it could be taken as union, and the result will also be a relation of the same (relation) type; in other words, the closure property will be preserved.

Here then is a definition of the relational union operator: Given two relations A and B of the same type, the union of those tow relations, A UNION B, is a relation of the same type, with body consisting of all tuples t such that t appears in A or in B or in both .

Example:

Let relation A and B be as shown in Figure 4.2 (both are derived from the suppliers relvar S; A is the suppliers in London, and B is the suppliers who supply part P1, intuitively speaking). Then A UNION B- see part a. of the Figure- is the suppliers who either are located in London or supply part P1 (or both).

σ.S#, sname,status,city(A) U σ.S#, sname,status,city(B)

 Notice that the result has three tuples, not four; duplicate tuples are eliminated, by definition. It can be remarked in passing that the only other operation for which this question of duplicate elimation arises is in projection [5].

4.3.2 Intersect

Like union and for essentially the same reason, the relational intersection operator requires its operands to be of the same type. Given two relations A and B of the same type, then, the intersection of those two relations, A INTERSECT B, is a relation of the same type, with body consisting of all tuples t such that t appears in both A and B.

Example: Again, let A and B be as shown in figure 4.2. Then A INTERSECT B –see part b of the figure- is the suppliers who are located in London and supply part P1 [5].

σ.S#, sname,status,city(A) ∩ σ.S#, sname,status,city(B)

Notice that the result has one tuple; this tuple is repeated in both sets A and B.

4.3.3 Difference

Like union and intersection, the relational difference operator also requires its operands to be of the same type. Given two relation A and B of the same type, then, the difference between those two relations, A MINUS B (in that order),is a relation of the same type, with body consisting of all tuples t such that t appears in A and not in B.

Example: Let A and B again be as shown in figure 4.2. Then A MINUS B- see part c. of the figure – is the suppliers who are located in London and do not supply part P1.

σ.S#, sname,status,city(A) - σ.S#, sname,status,city(B)

Also B MINUS A -see part d . of the figure- is the suppliers who supply part P1 and are not located in London. Observe that MINUS has a directionality to it, just as subtraction does in ordinary arithmetic [5].

σ.S#, sname,status,city(B) - σ.S#, sname,status,city(A)

	A
	
	B
	
	
	

	S#
	SNAME
	STATUS
	CITY
	
	S#
	SNAME
	STATUS
	CITY

	S1
	Smith
	20
	London
	
	S1
	Smith
	20
	London

	S4
	Clark
	20
	London
	
	S2
	Jones
	10
	Paris

	
	
	
	
	
	
	
	
	

	a. Union

(A UNION B)
	
	S#
	SNAME
	STATUS
	CITY

	
	
	S1
	Smith
	20
	London

	
	
	S4
	Clark
	20
	London

	
	
	S2
	Jones
	10
	Paris

	
	
	
	
	
	
	
	
	

	b. Intersection

(A INTERSECT B)
	
	S#
	SNAME
	STATUS
	CITY

	
	
	S1
	Smith
	20
	London

	
	
	
	
	
	
	
	
	

	c. Difference

(A MINUS B)
	
	d. Difference

(B MINUS A)

	S#
	SNAME
	STATUS
	CITY
	
	S#
	SNAME
	STATUS
	CITY

	S4
	Clark
	20
	London
	
	S3
	Jones
	10
	Paris

Figure 4.2 Union, Intersection and Difference Examples

4.3.4 Product

In mathematics, the Cartesian product (product for short) of two sets in the set of all ordered pairs such that, in each pair, the first element comes from the first set and the second element comes from the second set. Thus, the Cartesian product of two relations would be a set of ordered pairs of tuples, loosely speaking. But again it can be want to preserve the closure property; in other words, the result wanted to contain tuples per se, not ordered pairs of tuples. Therefore, the relational version of Cartesian product is an extended form of the operation, in which each ordered pair of tuples is replaced by the single tuple that is the union of the two tuples in question (using "union" in its normal set theory sense, not its special relational sense). That is, given the tuples {A1:a1, A2:a2, ……., Am:am} and {B1:b1, B2:b2, ……., Bn:bn} this union of the two is the single tuples {A1:a1, A2:a2, ……., Am:am, B1:b1, B2:b2, ……., Bn:bn} Another problem that occurs in connection with Cartesian product is that (of course) the result relation required to have a well-formed heading (i.e., to be of a proper relation type).Now, clearly the heading of the result consists of all of the attributes from both of the two input relations. A problem will therefore arise if those two headings have any attribute names in common; if the operation were permitted, the result heading would have two attributes with the same name and would thus not be "well-frormed." If construct the Cartesian product needed for two relation that do have any such common attribute names, therefore it must use the RENAME operator first to rename attributes appropriately. It can be defined that the (relational) Cartesian product of tow relations A and B, A TIMES B, where A and B have no common attribute names, to be a relation with a heading that is the (set theory) union of the headings of A and B and with a body consisting of the set of all tuples t such that t is the (set theory) union of a tuple appearing in A and a tuple appearing in B. Note that the cardinality of the result is the product of the cardinalities of A and B, and the degree of the result is the sum of their degrees.

Example: Let relations A and B be as shown in figure 4.3 (A is all current supplier numbers and B is all current part numbers, intuitively speaking) . Then A TIMES B -see the lower part of the figure- is all current supplier-number/part-number pairs [5].

For example R = S# X p#

	
	
	
	
	A
	S#
	
	
	
	B
	P#
	
	
	
	
	

	
	
	
	
	
	S1
	
	
	
	
	P1
	
	
	
	
	

	
	
	
	
	
	S2
	
	
	
	
	P2
	
	
	
	
	

	
	
	
	
	
	S3
	
	
	
	
	P3
	
	
	
	
	

	
	
	
	
	
	S4
	
	
	
	
	P4
	
	
	
	
	

	
	
	
	
	
	S5
	
	
	
	
	P5
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Cartesian product (A TIMES B)

	
	S#
	P#
	
	…
	…
	
	…
	…
	
	…
	…
	
	…
	…
	

	
	S1
	P1
	
	S2
	P1
	
	S3
	P1
	
	S4
	P1
	
	S5
	P1
	

	
	S1
	P2
	
	S2
	P2
	
	S3
	P2
	
	S4
	P2
	
	S5
	P2
	

	
	S1
	P3
	
	S2
	P3
	
	S3
	P3
	
	S4
	P3
	
	S5
	P3
	

	
	S1
	P4
	
	S2
	P4
	
	S3
	P4
	
	S4
	P4
	
	S5
	P4
	

	
	S1
	P5
	
	S2
	P5
	
	S3
	P5
	
	S4
	P5
	
	S5
	P5
	

	
	…
	...
	
	…
	…
	
	…
	…
	
	…
	…
	
	…
	…
	

Figure 4.3 Cartesian Product Examples

4.3.5 Restrict

Let relation A have attributes X and Y (and possibly others), and let Θ be an operator typically "=",">", etc. Such that the condition X Θ Y is well defined and, given particular values for X and Y, evaluates to a truth value (true or false). Then the Θ-restriction of relation A on attributes X and Y (in that order).
S WHERE CITY='London'

Is a relation with the same heading as A and with body consisting of all tuples t of A such that the condition X Θ Y evaluates to true for that tuple t. Restriction permits only a single condition in the WHERE clause. By virtue of the closure property, however, it is possible to extend it unambiguously to a form in which the expression in the WHERE clause consist of an arbitrary boolean combination of such conditions, thanks to the following equivalences :

A WHERE C1 AND C2 ≡ (A WHERE c1) INTERSECT (A WHERE C2)

A WHERE C1 OR C2 ≡ (A WHERE c1) UNION (A WHERE C2)

A WHERE NOT C ≡ A MINUS (A WHERE C)

Henceforth, therefore, it will be assumed that the <boolean expression>in the WHERE clause of restriction consists of such an arbitrary combination of conditions (with parentheses if necessary in order to indicate a desired order of evaluation). Where each condition in turn involves only attributes of the pertinent relation or selector invocations or both. Note that such a <boolean expression> can be established as true or false for a given tuple by examining just that tuple in isolation. Such a <boolean expression> is said to be a restriction condition. The restriction operator effectively yields a "horizontal" subset of a given relation that is, that subset of the tuples of the given relation for which some specified restriction condition is satisfied. Some examples are given in figure 4.4 [5].

σ.S#, sname,status,city(A) where city='London'

	
	S WHERE CITY='London'

	S#
	SNAME
	STATUS
	CITY
	

	
	
	S1
	Smith
	20
	London
	

	
	
	S4
	Clark
	20
	London
	

	
	
	
	
	
	
	
	

	
	P WHERE WEIGHT < WEIGHT(14.0)
	P#
	PNAME
	COLOR
	WEIGHT
	CITY
	

	
	
	P1
	Nut
	Red
	12.0
	London
	

	
	
	P5
	Cam
	Blue
	12.0
	Paris
	

	
	
	
	
	
	
	
	

	
	SP WHERE S#=S#('S6') OR P#=P#('P7')
	S#
	P#
	QTY
	

	
	
	
	
	
	

Figure 4.4 Restriction Examples

4.3.6 Project

Let relation A have attributes X,Y,…..Z (and possibly others). Then the projection of relation A on X,Y,…..Z.
A{X,Y,……..,Z} is a relation with:

· A heading derived from the heading of A by removing all attributes not mentioned in the set{X,Y,……..Z}and

· A body consisting of all tuples {X:x,Y:y,…..,Z:z}such that a tuple appears in A with X value x , Y value y,………,and Z value z

The projection operator thus effectively yields a "vertical" subset of a given relation- that is , that subset obtained by removing all attributes not mentioned in the specified commalist of attribute names and then eliminating duplicate (sub)tuples from what is left. A projection of the form A{}-i.e., one in which the attributes name commalist is empty- is legal. it represents a nullary projection. Some examples of projection are given in figure 4.5. Notice in the first examples (the projection of suppliers over CITY) that, although relvar S currently contains five tuples and hence five cities, there are only three cities in the result- duplicates (duplicates tuples, that is) are eliminated. Analogous remarks apply to the other examples also,of course . For example: π color,city (P)

	
	S{ CITY }
	CITY
	

	
	
	London
	

	
	
	Paris
	

	
	
	Athens
	

	
	
	
	
	

	
	P{ COLOR,CITY }
	COLOR
	CITY
	

	
	
	Red
	London
	

	
	
	Green
	Paris
	

	
	
	Blue
	Rome
	

	
	
	Blue
	Paris
	

	
	
	
	
	

	
	(S WHERE CITY='Paris') { S# }
	S#
	

	
	
	S2
	

	
	
	S3
	

Figure 4.5 Projection Examples

In practice, it is often convenient to be able to specify, not the attributes over which the projection is to be taken, but rather the ones that are to be "projected away" (i.e., removed). Instead of saying "project relation P over the P#, PNAME, COLOR, and CITY attributes, "for example, it might be say" project the WEIGHT attribute away from relation P," as here:

P{ALL BUT WEIGHT}

4.3.7 Join

Join comes in several different varieties. Easily the most important, however, is the so-called natural join specifically. here then is the definition (it is a little abstract, but you should already be familiar with natural join at an intuitive level. Let relations A and B have headings {X1,X2,…..Xm,Y1,Y2,………Yn} and{Y1,Y2,……..Yn,Z1,Z2,………Zp}respectively; i.e.,the Y attributes Y1,Y2……..Yn (only) are common to the tow relations. The X attributes X1,X2,…..Xm are the other attribute of A, and the Z attributes Z1,Z2,…Zp are the other attributes of B.Now consider {X1,X2,……,Xm}, {Y1,Y2,……Yn}, and {Z1,Z2,……Zp}as three composite attributes X,Y, and Z, respectively . Then the natural join of A and B is the following.

A JOIN B

Is a relation with heading {X,Y,Z}and body consisting of the set of all tuples {X:x,Y:y,Z:z}such that a tuple appears in A with X value x and Y value y and a tuple appears in B with Y value y and Z value z. An example of a natural join (the natural join S JOIN P , over the common attribute CITY) is given in figure 4.6.

It is still worth starting explicitly that joins are not always between a foreign key and a matching primary key, even though such joins are a very common and important special case.

	
	S#
	SNAME
	STATUS
	CITY
	P#
	PNAME
	COLOR
	WEIGHT
	

	
	S1
	Smith
	20
	London
	P1
	Nut
	Red
	12.0
	

	
	S1
	Smith
	20
	London
	P4
	Screw
	Red
	14.0
	

	
	S1
	Smith
	20
	London
	P6
	Cog
	Red
	19.0
	

	
	S2
	Jones
	10
	Paris
	P2
	Bolt
	Green
	17.0
	

	
	S2
	Jones
	10
	Paris
	P5
	Cam
	Blue
	12.0
	

	
	S3
	Blake
	30
	Paris
	P2
	Bolt
	Green
	17.0
	

	
	S3
	Blake
	30
	Paris
	P5
	Cam
	Blue
	12.0
	

	
	S4
	Clark
	20
	London
	P1
	Nut
	Red
	12.0
	

	
	S4
	Clark
	20
	London
	P4
	Screw
	Red
	14.0
	

	
	S4
	Clark
	20
	London
	P6
	Cog
	Red
	19.0
	

Figure 4.6 The Natural Join S JOIN P

Now, in the view point of the Θ-join operation. This operation is intended for those occasions (comparatively rare, but by no means unknown) where it need to join two relations to-together on the basis of some comparison operator other than equality. Let relations A and B satisfy the requirements for Cartesian product(i.e., they have no attribute names in common);let A have an attribute X and let B have an attribute Y,and let X,Y, and Θ satisfy the requirements for restriction. Then the Θ of relation A on attribute X with relation B on attribute Y is defined to be the result of evaluating the expression (A TIMES B) WHERE X ΘY. In other words, it is a relation with the same heading as the Cartesian product of A and B, and with a body consisting of the set of all tuples t such that t appears in that Cartesian product and the condition "X ΘY" evaluates to true for that tuple t. By way of example, suppose we wish to compute the greater-than join of relation S on CITY with relation p on CITY (so Θ here is ">"; it can be assume that ">" makes sense for cities, and interpret it to mean simply "greater in alphabetic ordering"). An appropriate relational expression is as follows:

((S RENAME CITY AS SCITY) TIMES (P RENAME CITY AS PCITY))

WHERE SCITY > PCITY

Note the attribute renaming in this example.(Of course, it would be sufficient to rename just one of the tow CITY attributes; the only reason for renaming both is symmetry.) The result of the overall expression is shown in figure 4.7.

σ.S#, sname,status,scity(S) σ.S#, pname,status,pcity(B)

If Θ is"=", the Θ-join is called an equijoin. It follows from the definition that the result of an equijoin must include tow attributes with the property that the values of those tow attributes are equal in every tuple in the relation. If one of those tow attributes is projected a way and the other renamed appropriately (if necessary), the result is the natural join! For example, the expression representing the natural join of suppliers and parts (over cities) is as the following:

S JOIN P

Is equivalent to the following more complex expression:

((S TIMES(P RENAME CITY AS PCITY))

WHERE CITY=PCITY)

{ALL BUT PCITY}

	
	S#
	SNAME
	STATUS
	SCITY
	P#
	PNAME
	COLOR
	WEIGHT
	PCITY
	

	
	S2
	Jones
	10
	Paris
	P1
	Nut
	Red
	12.0
	London
	

	
	S2
	Jones
	10
	Paris
	P4
	Screw
	Red
	14.0
	London
	

	
	S2
	Jones
	10
	Paris
	P6
	Cog
	Red
	19.0
	London
	

	
	S3
	Blake
	30
	Paris
	P1
	Nut
	Red
	12.0
	London
	

	
	S3
	Blake
	30
	Paris
	P4
	Screw
	Red
	14.0
	London
	

	
	S3
	Blake
	30
	Paris
	P6
	Cog
	Red
	19.0
	London
	

Figure 4.7 Greater-than Join of suppliers and parts on cities

4.3.8 Divide

Reference [7] define two distinct "divide" operators that small divide and the great Divide, respectively. a<divide>in which the <per>consists of just one<relational expression>s is a Small Divide, a<divide>in which it consists of a parenthesized commalist of tow <relational expression>s is a Great Divide. The description that follows applied to the small Divide only, and only to a particular limited form of the Small Divide at that. See reference [7] for a discussion of the Great Divide and for further details regarding the Small Divide as well.

It should be said that the version of the Small Divide as discussed here is not the same as original operator-in fact, it is an improved version that overcomes certain difficulties that arose with that original operator in connection with empty relations.
Here then is the definition. Let relations A and B have headings

{X1,X2,……..,Xm} and {Y1,Y2,…..…,Yn}

respectively (i.e., A and B have disjoint headings), and let relation C have heading

{ X1,X2,……..,Xm,Y1,Y2,…..…,Yn}

(i.e., C has a heading that is the union of the headings of A and B).Let us now regard {X1,X2,……..,Xm}and{Y1,Y2,…..…,Yn} as composite attributes X and Y, respectively. Then the division of A by B per C (where A is the dividend, B is the divisor,and C is the "mediator")as the following.

A DIVIDE BY B PER C

Is a relation with heading{X }and body consisting of the tuples{X:x}such that a tuple {X:x,Y:y} appears in C for all tuples {Y:y}appearing in B . In other words, the result consists of those X values from A whose corresponding Y values in C include all Y values from B, loosely speaking. Figure 4.8 shows some simple examples of division. The dividend (DEND) in each case is the projection of the current value of relvar S over S#; the mediator (MED) in each case is the projection of the current value of relvar SP over S# and P#; the three divisors (DOR) are as indicated in the figure. Notice the last example in particular, in which the divisor is a relation containing part numbers for all currently know parts; the result (obviously) shows supplier numbers for suppliers who supply all of those parts. As this example suggests, the DIVIDEBY operator is intended for queries of this same general nature; in fact, whenever the natural language version of the query contains the word "all" ("Get suppliers who supply all parts"), it is a strong possibility that division will be involved. However, it is worth pointing out that such queries are often more readily expressed in terms of the relational comparisons anyway [5].

	
	DEND
	S#
	MED
	S#
	P#
	
	…
	…
	

	
	
	S1
	
	S1
	P1
	
	S2
	P1
	

	
	
	S2
	
	S1
	P2
	
	S2
	P2
	

	
	
	S3
	
	S1
	P3
	
	S3
	P2
	

	
	
	S4
	
	S1
	P4
	
	S4
	P2
	

	
	
	S5
	
	S1
	P5
	
	S4
	P4
	

	
	
	
	
	S1
	P61
	
	S4
	P5
	

	
	
	
	
	…
	…
	
	…
	…
	

	
	
	
	
	
	
	
	
	
	

	
	DOR
	P#
	
	
	P#
	
	DOR
	P#
	

	
	
	P1
	
	
	P2
	
	
	P1
	

	
	
	
	
	
	P4
	
	
	P2
	

	
	
	
	
	
	
	
	
	P3
	

	
	
	
	
	
	
	
	
	P4
	

	
	
	
	
	
	
	
	
	P5
	

	
	
	
	
	
	
	
	
	P6
	

	DEND DIVIDEBY DOR PER MED

	
	
	S#
	
	
	S#
	
	
	S#
	

	
	
	S1
	
	
	S1
	
	
	S1
	

	
	
	S2
	
	
	S2
	
	
	
	

Figure 4.8 Division Examples

4.4 Associativity and Commutativity

It is easy to verify that UNION is associative, that is, if A, B, and C are arbitrary relational expressions yielding relations of the same type, then the expressions

(A UNION B) UNION C and A UNION (B UNION C)

Are logically equivalent. For convenience, therefore, it could be a sequence of UNIONs to be written without any embedded parentheses; i.e., each of the foregoing expressions can be unambiguously simplified to just

A UNION B UNION C

Analogous remarks apply to INTERSECT, TIMES, and JOIN (but not to MINUS).

It should be mentioned that UNION, INTERSECT, TIMES and JOIN (but not MINUS) are commutative – that is, the expressions as well.
A UNION B and B UNION A

Are also logically equivalent, and similarly for INTERSECT, TIMES and JION. Finally, We remark that if A and B have no attribute names in common, then A JOIN B is equivalent to A TIMES B, i.e., natural join degenerates to Cartesian product in this case [5, 7].

4.5 Summary

There are eight operators that take relations as their operands. These operators are: Restrict, Project, Product, Union, Intersection, Difference, Join, and Divide.
Project

a

b

c

x

y

a

a

b

b

c

c

x

y

x

y

x

y

Product

Restrict

Intersection

a1

a2

a3

b1

b1

b2

a1

a2

a3

b1

b1

b2

a1

a2

a3

b1

b1

b2

a1

a2

a3

(Normal) Join

a

b

c

x

z

a

a

a

b

c

x

y

z

x

y

Divide

a

Union

Difference

SCITY > PCITY

PAGE
50

